Вы вошли на сайт, как Гость
Регистрация

Активные фильтры

Теоретические основы электроники
(Фильтры)

5.2. Активные фильтры

Известны очень хитроумные конструкции активных фильтров, каждый из которых используется для того, чтобы в качестве характеристики фильтра получить нужную функцию, как, например, функция Баттерворта, Чебышева и др. Можно спросить: зачем вообще нужно больше одной схемы активного фильтра? Причина в том, что каждая схемная реализация является наилучшей в смысле тех или иных желательных свойств, и поэтому «абсолютно лучшей» схемы активного фильтра не существует.

В этой части будет рассмотрено несколько схем для реализации фильтров нижних и верхних частот, а также полосовых фильтров. Начнем же с популярной схемы на ИНУН, или управляемого источника, затем рассмотрим построение фильтров на основе метода переменных состояния, и наконец, упомянем о двойном Т-образном фильтре с высоким избирательным подавлением («фильтр- пробка») и о некоторых интересных новых направлениях в области реализации фильтров на переключаемых конденсаторах.

Схемы на ИНУН (источник напряжения, управляемый напряжением)

Фильтр на источнике напряжения, управляемом напряжением (ИНУН), известный также просто как фильтр с управляемым источником, это вариант фильтра Саллена и Ки, который был описан выше. В этом случае повторитель с единичным коэффициентом усиления заменен неинвертирующим усилителем с коэффициентом усиления, большим 1. На рис. ниже даны схемы для реализации фильтра нижних и верхних частот, а также полосового фильтра. С помощью присоединенных к выходу ОУ резисторов, образован неин- вертирующий усилитель напряжения с коэффициентом усиления К, а остальные R и С по-прежнему формируют частотную характеристику фильтра. Как будет показано далее, эти двухполюсные фильтры могут быть фильтрами Баттерворта, Бесселя и др. за счет определенного подбора параметров элементов. Любое число двухполюсных секций на ИНУН может быть соединено каскадно для создания фильтров более высокого порядка. В таком соединении отдельные секции, вообще говоря, не идентичны. Действительно, каждая секция соответствует квадратичному сомножителю полинома степени n, описывающего фильтр в целом.

В большинстве обычных справочников по фильтрам приведены формулы и таблицы для всех стандартных характеристик фильтров, включая отдельные таблицы для фильтров Чебышева с разными амплитудами пульсаций. В следующем разделе будут представлены удобные в употреблении таблицы для проектирования фильтров на ИНУН типа Баттерворта, Бесселя и Чебышева (фильтр Чебышева с неравномерностью 0,5 и 2 дБ), используемых в качестве фильтров нижних или верхних частот. Полосовой и полосноподавляющий фильтры легко могут быть составлены из их комбинаций.

Проектирование фильтров на ИНУН с использованием упрощенных таблиц

Перед тем как пользоваться табл., надо решить, какая характеристика фильтра нам нужна.

Как уже говорилось ранее, фильтр Баттерворта хорош, если нужна максимально плоская характеристика в полосе пропускания, фильтр Чебышева обеспечивает наиболее крутой спад от полосы пропускания к полосе задерживания (ценой некоторой неравномерности характеристики в полосе пропускания), а фильтр Бесселя имеет наилучшую фазо- частотную характеристику, т.е. постоянное запаздывание сигнала в полосе пропускания и соответственно хорошую переходную характеристику. Амплитудно- частотные характеристики всех этих типов даны на соответствующих графиках (рис. ниже). Графики нормированных частотных характеристик 2-, 4-, 6- и 8-полюсных фильтров из табл. Характеристики фильтров Баттерворта (а) и Бесселя (б) нормированы приведением ослабления 3 дБ к единичной частоте, а фильтры Чебышева-приведением к этой частоте ослабления 0,5 дБ (в) и 2 дБ (г) соответственно.

Фильтры Баттерворта нижних частот. Если используется фильтр Баттерворта, то параметры всех секций имеют одинаковые значения R и С, определяемые соотношением RC = 1/2·pi·fс, fс - частота соответствующая значению ослабления всего фильтра, равному -3 дБ. Чтобы построить, например, 6-полюсный фильтр Баттерворта нижних частот, мы соединяем каскадно три вышеописанные секции с коэффициентами усиления, равными соответственно 1,07, 1,59 и 2,48 (желательно именно в указанном порядке, во избежание возни с динамическим диапазоном) и подбором идентичных для всех секций параметров R и С устанавливаем точку, отвечающую значению -3 дБ.

Фильтры нижних частот Бесселя и Чебышева. Ненамного сложнее построить на ИНУН фильтр Бесселя или Чебышева. Опять-таки соединим каскадно несколько двухполюсных фильтров на ИНУН с предписанным для каждой секции коэффициентом усиления. Снова в каждой секции зададим R1 = R2 = R и C1 = C2 = С. Но теперь, в отличие от ситуации с фильтром Баттерворта, произведение RC будет для каждой секции свое и должно вычисляться с помощью нормирующего множителя (его значения для каждой секции приведены в табл.) по формуле RC = 1/2·pi·fс·fn. Здесь через fс обозначена точка, отвечающая значению -3 дБ, для фильтра Бесселя и граница полосы пропускания-для фильтра Чебышева, т.е. это частота, на которой амплитудно-частотная характеристика спадает ниже диапазона неравномерности при переходе к полосе задерживания. Например, характеристика фильтра Чебышева нижних частот с неравномерностью 0,5 дБ и fс = 100 Гц будет плоской с небольшой неравномерностью от 0 до -0,5 дБ в диапазоне от 0 до 100 Гц, на частоте 100 Гц будет затухание 0,5 дБ, а дальше частоты 100 Гц-крутой спад. Значения параметров приведены в табл. для фильтров Чебышева, имеющих неравномерность характеристики в полосе пропускания 0,5 и 2 дБ; у последнего спад к полосе задерживания несколько круче.

Фильтры верхних частот. Чтобы построить фильтр верхних частот, используем показанную ранее конфигурацию фильтра нижних частот, т.е. поменяем местами R и С. При этом для фильтра Баттерворта ничего больше не изменится (значения R, С и К останутся те же). Для фильтров Бесселя и Чебышева сами значения К останутся те же, а нормирующий множитель fn должен быть обратный, т. е. для каждой секции новое значение равно fn= 1/fn (как указано в табл.). Полосовой фильтр получается при каскадном соединении фильтров верхних частот и фильтров нижних частот с перекрывающимися полосами пропускания. Полосноподавляющий же фильтр можно получить с помощью схемы сложения выходных сигналов фильтров верхних частот и фильтров нижних частот с неперекрывающимися полосами пропускания. Однако такие каскадные фильтры не очень пригодны там, где нужны фильтры с высокой добротностью (полосовые фильтры с крутой переходной областью) вследствие большой чувствительности индивидуальных (непарных) фильтровых секции к значениям параметров элементов. В таких случаях следует применять высокодобротную однокаскадную полосовую схему (т. е. описанную ранее полосовую схему на ИНУН или рассматриваемые далее биквадратные фильтры и фильтры на основе метода переменных состояния) вместо многокаскадного фильтра. Даже однокаскадный двухполюсный фильтр может иметь характеристику с крайне острым пиком. Информацию о таких конструкциях фильтров можно найти в справочниках. В фильтрах на ИНУН используется минимальное число элементов (один операционный усилитель на два полюса характеристики), при этом они дают дополнительный выигрыш в виде неинвертирую- щего коэффициента усиления, низкого выходного полного сопротивления, малого разброса значений параметров, простоты регулировки коэффициента усиления и способности работать при большом коэффициенте усиления или высокой добротности. Их недостаток-высокая чувствительность к изменениям параметров элементов и коэффициента передачи усилителя, кроме того, они не годятся для построения перестраиваемых фильтров с устойчивой характеристикой.